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Abstract

Augmented Reality (AR) eyeglasses are expected to
become increasingly integrated into everyday life, en-
abling seamless applications in communication, pro-
ductivity, and entertainment. However, the widespread
adoption of AR devices remains hindered by chal-
lenges such as limited battery life, display constraints,
and privacy considerations. A critical source of power
inefficiency lies in redundant frame rendering, where
new frames are generated despite minimal scene or
head movement. In this paper, we propose a data-
driven method for optimizing rendering frequency by
analyzing head movement using object detection. We
utilize YOLOvV8x and FAN-Face to track gaze refer-
ence points across 5-minute RGB videos captured by
Meta Project Aria glasses. By computing pixel dis-
placements between frames, we determine when a full
re-render is necessary based on configurable thresh-
olds. Frames lacking monitor and face detection are
excluded from rendering. We introduce a re-render
ratio as an evaluation metric and demonstrate that
significant frame reuse is possible, thereby reducing
power consumption. This work highlights a scalable
strategy to improve energy efficiency in AR rendering
systems.

1. Introduction and Motivation

Augmented Reality glasses represent a transforma-
tive shift in how digital content is experienced and in-
teracted with in real-world settings. Devices such as
Meta Ray-Bans and Project Aria already include so-
phisticated sensing hardware—cameras, microphones,
and inertial sensors—that allow for real-time percep-
tion and interaction. These devices are poised to sup-
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port tasks like live Al assistance, translation, remote
meetings, and immersive navigation. However, sev-
eral technical challenges impede their practical adop-
tion. These challenges include the need to last all day
without recharging the battery, larger built in displays,
and increased neural computing efficiency inside of
the glasses.

Among these, power efficiency is particularly crit-
ical. Unlike smartphones, AR glasses operate under
stringent form factor limitations, severely constraining
battery capacity. Yet, they must perform continuous
rendering, environment sensing, and data processing.
Traditional rendering pipelines refresh the display on
a frame-by-frame basis, which can result in redundant
computations when the scene or viewpoint changes lit-
tle between frames.

To address this, we explore an approach that reuses
rendered frames whenever possible in two different of-
fice productivity scenarios. We propose two models,
one using object detection and the other using face de-
tection, to estimate head motion and track the user’s
gaze anchor point across time. When the displacement
between frames falls below a set threshold, we infer
that the scene is sufficiently stable and rendering can
be skipped or minimized. This significantly reduces
unnecessary computation and conserves energy.

Our work builds on prior research in adaptive ren-
dering, motion-aware graphics, and computer vision-
based tracking. Unlike model-based techniques re-
quiring inertial measurements or depth sensors, our
method relies solely on RGB data and bounding box
inference from pretrained YOLO and FAN-Face mod-
els [11]. We aim to evaluate how effective this mini-
mal setup is in detecting usable frame stability across
different workplace scenarios.



2. Related Work

The You Only Look Once (YOLO) family of mod-
els, including YOLOVS5 [4] and YOLOVS, are widely
adopted for real-time object detection. YOLO intro-
duced a paradigm shift by unifying bounding box re-
gression and object classification into a single, end-to-
end differentiable network [9]. The architecture con-
sists of three core components: a backbone for feature
extraction, a neck for feature aggregation, and a head
for final prediction. The backbone, typically a convo-
lutional neural network (CNN), encodes input images
into multi-scale feature maps. The neck further inte-
grates and refines these features, while the head pro-
duces bounding box coordinates and class probabili-
ties.

YOLOVS incorporates several architectural en-
hancements to improve detection performance. No-
tably, it employs mosaic data augmentation [1] by
stitching multiple images together, enhancing robust-
ness to small object detection. The feature extraction
leverages Cross-Stage Partial Networks (CSP) mod-
ules, which split and merge feature maps to reduce
computation while maintaining accuracy, drawing in-
spiration from DenseNet [3]. Furthermore, YOLOVS5
adopts the Path Aggregation Network (PANet) [0]
structure for improved multi-scale feature fusion. Its
loss function is a composite of Binary Cross-Entropy
(BCE) losses for classification and objectness, com-
bined with Complete Intersection over Union (CloU)
loss for bounding box regression, optimizing directly
for mean Average Precision (mAP).

YOLOVS builds upon YOLOVS with further archi-
tectural refinements. It introduces the C2f module,
an evolution of the CSP layer, which enhances fea-
ture representation by fusing contextual and seman-
tic information [10]. Unlike previous YOLO versions,
YOLOVS adopts an anchor-free design and employs a
decoupled head, allowing separate branches for object-
ness prediction, classification, and localization, lead-
ing to improved specialization and detection accuracy.
In the output layer, a sigmoid activation is used for ob-
jectness scores, while a softmax activation computes
class probabilities. For loss functions, YOLOVS uti-
lizes a combination of Complete IoU (CloU) and Dis-
tribution Focal Loss (DFL) [5] for localization, and
BCE for classification, resulting in enhanced perfor-

mance, particularly for small object detection.

Pose Estimation. Understanding a person’s posture
and limb articulation is essential for high-level tasks
such as action recognition. It also serves as a funda-
mental tool in fields like human-computer interaction
(HCI) and animation. One of the earliest architectures
proposed for pose estimation was the Stacked Hour-
glass network [7]. This network follows a symmet-
ric topology similar to U-Net [8], where features are
progressively down-sampled a very low resolution and
then up-sampled, integrating information across mul-
tiple resolutions using convolutional neural networks.
Unlike U-Net, which employs deconvolution layers
for upsampling, the hourglass network utilizes nearest-
neighbor upsampling of the lower-resolution features
combined with skip connections via element-wise ad-
dition to perform top-down processing. This architec-
ture achieved state-of-the-art (SOTA) performance on
two standard pose estimation benchmarks at the time:
FLIC and MPII Human Pose.

Face Alignment. For both 2D and 3D face align-
ment, the Face Alignment Network (FAN) model [2]
was proposed. This model is based on the Hourglass
network but replaces the standard bottleneck block
with a hierarchical, parallel, and multi-scale block, im-
proving its effectiveness in face alignment tasks.

For face recognition, we utilized the FAN-Face
model, which integrates two networks: the Face Align-
ment Network (FAN) and the Face Recognition Net-
work (FRN). This combination enables more accu-
rate face recognition by leveraging both spatial and
identity-related features. In this approach, the heatmap
generated by the pretrained FAN is concatenated with
the input image and then fed into the Face Recogni-
tion Network. During training, feature tensors from
both FAN and FRN are integrated. To enhance com-
patibility between these two feature representations,
Adaptive Instance Normalization (AdalN) is applied
so that they have similar distributions. By incorpo-
rating heatmaps in addition to raw image inputs, the
model incorporates spatial information and establishes
landmarks, which enhances overall recognition accu-
racy. For training, they employed ArcFace loss. The
model was trained using PyTorch and packaged as a
Python module, which we utilized to extract precise
nose tip coordinates from facial images.
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Figure 1. Object Detection Power Savings Pipeline for two
monitor workplace scenario
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Figure 2. Object Detection Power Savings Pipeline for one
on one meeting scenario

3. Methods

Figure 1 and 2 illustrate our proposed object detec-
tion power savings pipelines, which aim to reduce re-
dundant computation by selectively re-rendering video
frames. Given an input .vrs file from Project Aria, we
first extract RGB video streams using the Aria Media
Processing System (MPS). The video is then decom-
posed into individual frames using OpenCYV. For each
frame, YOLOvS8x (1) or FAN-Face (2) are applied to
detect the monitor (1) or nose (2) and extract reference
point coordinates. These coordinates are subsequently
compared across frames to estimate inter-frame pixel
changes. Based on a predefined threshold, the sys-
tem computes the proportion of frames that require re-
rendering, resulting in a re-render frequency metric as
the final output.

3.1. Data Collection

Our experimental data originates from a user wear-
ing Meta Project Aria glasses while interacting with
multiple monitors or other people in a workspace. The
data were extracted from a .vrs file using Meta’s MPS
processing pipeline, yielding two 5-minute RGB video
at 30 FPS, totaling a little over 9,000 frames each. Aria
glasses have video resolution of 1408 x 1408 px.

3.2. Detection and Tracking Pipeline

For the monitor scenario, we used YOLOvV8x, a
state-of-the-art object detection model, to identify fea-
tures labeled as tv, monitor, or screen. For each frame,
we selected the top-right corner of the leftmost de-
tected monitor as our gaze reference point. If no mon-
itor was detected, we marked the coordinates as (-1,
-1).

We introduced a preference function to ensure con-
sistency in monitor selection when multiple monitors
were visible, verifying its accuracy and consistency.
The logic prioritized the leftmost bounding box among
all qualifying detections to reduce tracking jitter.

For the one on one meeting (telepresence) scenario,
we used FAN-Face, a face recognition model. For each
frame, we selected the tip of the nose as our gaze ref-
erence point. If no nose was detected, we marked the
coordinates as (-1, -1).

In situations where the nose is outside the image,
the face does not need to be rendered in the AR glasses
because the subject is not viewing the other person in
the meeting. We choose to add these frames in our
re-render calculation classifying them as power saving
opportunities.

3.3. Motion-Based Re-Render Decision

To evaluate the head movement between frames, we
computed the Euclidean distance between the current
frame’s reference coordinates (in pixels) and those of
the last rendered frame. If the displacement was be-
low a configurable threshold (10, 20, or 30 pixels), we
skipped re-rendering. Otherwise, the frame was fully
rendered and became the new reference.

To formalize this:

DG) = /(2 — )2 + (yi — yr)?

where z; and y; are current coordinates while x,
and y, are reference frame coordinates. If D(i) < T,
reuse the previous frame where T denotes an arbitrar-
ily defined threshold. Frames with invalid coordinates
(i.e., -1, -1) were excluded from rendering and the re-
render ratio calculation in the monitor scenario (1) and
included in the telepresense scenario (2).

3.4. Evaluation Metric

We define the re-render frequency R as: Lower val-
ues of R indicate greater rendering efficiency. We



computed R under different thresholds (10, 20, 30 pix-
els) to analyze sensitivity and optimization potential.
For example, R = 10% means ten percent of frames do
NOT need to be re-rendered in the video, saving the
power of rendering 900 frames (assuming 9000 total
frames in a video).

3.5. Assumptions and Limitations

* In the one-on-one meeting scenario, we used the
coordinates of the nose to determine whether
to render the scene. However, a limitation of
this approach is that, unlike the dual-monitor
workspace scenario—where monitors remain sta-
tionary—the person in the meeting continues
to move their body. As a result, even if the
nose stays within the predefined threshold and
the scene is not rendered, the person may still
be moving their hands or body, meaning the
scene needs to be re-rendered anyway. Neverthe-
less, our project only considered facial movement
(trivial in this scenario) and did not take body
movements into account.

* The method assumes the monitor presence in
the field of view for all frames in the monitor
workplace scenario. If no monitor is present,
we conclude that the frame does not need to be
re-rendered, and include it in our rendering fre-
quency metric. In actuality, one monitor may
need to be re-rendered while the other does not.
However, we verified that both monitors were
present in all frames of our collected data to make
this assumption.

* No temporal smoothing was applied; minor de-
tection jitter in our detection models may cause
false positives by calculating a large jump be-
tween frames if multiple monitors are present.
We manually verified this was not the case in each
scenario

* Lighting changes and occlusions can influence
YOLO and FAN-Face detection accuracy. Specif-
ically, movement of the other person’s head can
make it harder to detect the nose or provide less
accurate distance calculations. Likewise, glare
from the monitors may detract from detection ac-
curacy.

In future work, incorporating multi-object smooth-
ing, confidence-weighted detection, or gaze estimation
could improve robustness.

4. Experimental Result

Table 1 reports the re-rendered ratios under vary-
ing pixel displacement thresholds for both the monitor
and nose scenarios. As the threshold increases from
10px to 30px, the re-rendered ratio consistently im-
proves across both scenarios. Specifically, the monitor
scenario achieves 87.76% at 10px, rising to 95.25% at
30px. A similar trend is observed in the nose scenario,
with performance increasing from 82.24% to 92.95%.
These results suggest that higher thresholds reduce un-
necessary re-rendering, improving power efficiency.

Monitor Scenario Nose Scenario
Threshold . .
re-rendered ratio | re-rendered ratio
10px 87.76% 82.24%
20px 92.82% 90.00%
30px 95.25% 92.95%

Table 1. Re-rendered ratio by threshold under different sce-
narios

5. Conclusion

In this work, we proposed a data-driven framework
for optimizing rendering efficiency in augmented re-
ality glasses by leveraging object and face detection
models to track scene movements. We demonstrated
that significant reductions in rendering frequency can
be achieved by monitoring pixel displacement of ref-
erence points such as monitors and facial landmarks.
Our experimental results show that with a reasonable
threshold, more than 90% of frames can be reused
without perceptible scene changes, indicating substan-
tial potential for power savings.

While our approach focuses on gaze anchor stabil-
ity and excludes broader body movements, it opens
promising directions for future research. In particular,
integrating temporal smoothing, richer motion cues,
and semantic understanding of the scene could further
enhance the robustness and applicability of rendering
optimization strategies for AR devices. As energy ef-
ficiency remains a critical bottleneck for AR adoption,
developing intelligent rendering control mechanisms



such as ours is essential for enabling seamless, long-
duration AR experiences in real-world environments.
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